On Generalized Elite Primes
نویسندگان
چکیده
A prime number p is called b-elite if only finitely many generalized Fermat numbers Fb,n = b 2 + 1 are quadratic residues to p. So far, only the case b = 2 was subjected to theoretical and experimental researches by several authors. Most of the results obtained for this special case can be generalized for all bases b > 2. Moreover, the generalization allows an insight to more general structures in which standard elite primes are embedded. We present selected computational results from which some conjectures are derived.
منابع مشابه
Verifying Two Conjectures on Generalized Elite Primes
A prime number p is called b-elite if only finitely many generalized Fermat numbers Fb,n = b 2 + 1 are quadratic residues modulo p. Let p be a prime. Write p − 1 = 2h with r ≥ 0 and h odd. Define the length of the b-Fermat period of p to be the minimal natural number L such that Fb,r+L ≡ Fb,r (mod p). Recently Müller and Reinhart derived three conjectures on b-elite primes, two of them being th...
متن کاملA Note on Artinian Primes and Second Modules
Prime submodules and artinian prime modules are characterized. Furthermore, some previous results on prime modules and second modules are generalized.
متن کاملOn the Associated Primes of the generalized $d$-Local Cohomology Modules
The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary generalized local cohomology modules. Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$ are finitely generated $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...
متن کاملOn the Fermat Periods of Natural Numbers
Let b > 1 be a natural number and n ∈ N0. Then the numbers Fb,n := b 2 +1 form the sequence of generalized Fermat numbers in base b. It is well-known that for any natural number N , the congruential sequence (Fb,n (mod N)) is ultimately periodic. We give criteria to determine the length of this Fermat period and show that for any natural number L and any b > 1 the number of primes having a peri...
متن کاملAll Elite Primes Up to 250 Billion
A prime number p is called elite if only finitely many Fermat numbers 2 n + 1 are quadratic residues of p. Previously only the interval up to 10 was systematically searched for elite primes and 16 such primes were found. We extended this research up to 2.5 · 10 and found five further elites, among which 1 151 139 841 is the smallest and 171 727 482 881 the largest.
متن کامل